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The theory of disordered systems occupied a special place in the scientific 
activities of I. M. Lifshitz. Indeed, this new and rapidly developing branch of 
solid state physics--one of "hot potatoes" of modern physics---emerged as 
an independent discipline essentially due to his ideas and works. Here, I. M. 
Lifshitz passed all the stages in the development of a new field: the 
elaboration of many basic concepts, a clear-cut formulation of fundamental 
principles, the construction of adequate investigation methods, and, finally, 
an analysis of important particular results. I. M. Lifshitz was engaged in 
studying disordered systems from 1937, when his first paper on the subject 
appeared, a till his last days: the last Lifshitz paper on disordered systems is 
published in this issue of the Journal. The present paper is a brief survey of 
important results obtained by I. M. Lifshitz in the theory of disordered 
systems. 

1. SCATTERING AND ABSORPTION OF WAVES IN 
SOLID SOLUTIONS AND A CORRELATION OF ATOMIC 
POSITIONS IN THEM: 1 9 3 7 - 1 9 5 0  

The appearance of the first work of the series [III.2] was initiated by 
Landau's paper "X-ray scattering in crystals of a variable structure" (1937) 
which considered a layered crystal formed by layers of random, uncorrelated 
thicknesses. In paper [III.2], which appeared right after the Landau paper 
had been published, the same problem was solved for a disorder of a more 
general form, and even in this paper the author raised the question of the 
origin of the disorder: the aim of the paper was "to find a distribution in a 
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crystal of variable structure proceeding from a certain mechanism of 
structure formation." The statistical properties of disorder were also 
considered in great detail in [III.5 ], though these papers deal mainly with (in 
modern terms) calculating the correlation functions of solid solutions (the 
Ising model). In 1938, I. M. Lifshitz introduced the presently acknowledged 
classification of disorder types in disordered systems [III.4]: "...we shall 
consider two types of deviation from a perfect lattice: the first type is a 
disordered distribution of atoms with different scattering abilities at lattice 
sites [site disorder]; the second type of deviation is related to the distortion 
of the spatial lattice site distribution [structural disorder]. 

The series of works [III.8] is very impressive. 
First, in these papers I. M. Lifshitz showed, for the first time, the 

existence of new "resonance" ("local" in modern terminology) frequencies 
separated from the continuous spectrum, and analyzed in detail the 
contribution of the corresponding modes to crystal characteristics. Here we 
mean the states of quasiparticles, arising near local defects, which play a 
very important role in various fields of modern physics. 

Second, the papers consider, both explicitly and implicitly, many 
fundamental ideas of the theory of disordered systems, which have now been 
commonly accepted. 

For example, a problem was raised, for the first time, concerning the 
disorder-induced reconstruction of the quasiparticle spectrum: "...the 
existence of impurities gives rise to new resonance frequencies, as well as to 
the shift and broadening of the "old" frequencies .... The study of vibrations 
in an imperfect lattice is, in principle, interesting if only because in this case 
the method of plane waves is inapplicable." 

For the first time, the selfaveragedness of an additive physical quantity 
was explicitly proved for the dipole moment of an isotopically disordered 
crystal: 

p = p o ( 1  + az ~ Sk(aZ)k ) 
z - z 0 ~=0 (1) 

a = Am/m, z = co z 

The proof is based on the fact that when the number of sites N in the sample 
tends to infinity (N--* oo), all the coefficients Sk of the perturbation series (1) 
become nonrandom: 

lim (S~Sm - S~Sm) = 0 
N-~oo 

In 1957, this proof was, in fact, rediscovered by Kohn and Luttinger in their 
paper devoted to calculating the kinetic characteristics of metals with 
impurities. 
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I. M. Lifshitz pointed out, for the first time, that disorder-induced small 
perturbations "...may be of two essentially different types: 

(1) a large fraction of sites is occupied by 'foreign' atoms, but these 
'foreign' atoms differ little from the 'host' ones... 

(2) a relatively small number of sites is occupied by 'foreign' atoms, 
but these atoms differ significantly from the 'host' atoms...." In accordance 
with this classification, expansions of spectral characteristics were 
constructed with respect to the parameter Am/m for isotopic disorder (1) and 
with respect to the concentration c of "foreign" atoms for case (2). 

The fine structure of the vibration impurity band was also considered 
for the first time. "...The appearance of new resonance frequencies in this 
approximation corresponds to only one impurity atom in the lattice... 
Retaining the higher-order terms in the concentration expansion, we would 
obtain a greater number of new resonance frequencies that remain isolated. 
The forces of these new frequencies would be proportional to the next 
concentration powers." 

The direction discussed in this section was further developed in a 
number of works, among which papers [III.11] and [III.20] are of most 
importance. 

2. LOCAL P E R T U R B A T I O N  T H E O R Y :  1 9 4 5 - 1 9 5 2  

The papers discussed in the present section deal with dynamical 
problems, which naturally arise from the works of the previous series. I. M. 
Lifshitz came to the concept of a local (degenerate) perturbation precisely in 
connection with the study of local frequencies in the phonon spectrum. It 
should, however, be noted that the applicability of the general local pertur- 
bation theory developed in [IV. 1, 2; II. 1] goes far beyond the framework of 
the phonon problems. 

A perturbation V is called degenerate if the corresponding operator 
sends any state vector into a linear combination of given state vectors whose 
number is much smaller than the total number of the states of the system. A 
typical example of such a perturbation is the one which is sufficiently well 
localized in all or in certain directions (local defect, vacancy; linear defect, 
dislocation; planar defect, crystal surface). 

In these papers, I. M. Lifshitz rigorously formulated in rather general 
terms and, in fact, completely solved the problem of analyzing spectrum 
modification under degenerate perturbations; he obtained efficient relations 
for modified spectral characteristics of a macroscopic crystal. For the first 
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time, I. M. Lifshitz derived and analyzed the equation for the local level E 0 
in a general case: 

1 + f  C(E)dE  
E - E  o - 0 

C(E) = eE f, ~ 
dak 

2(k)=e I Vofl(k)l 

where ~ is the parameter describing the intensity of a local perturbation IT, 
~o2(k) is the dispersion law for a perfect crystal. He introduced the spectral 
shift function 

~(E) = No(E ) -- N(E) 

which is equal to the difference of the integrated densities of states for the 
unperturbed and perturbed Hamiltonians, obtained explicit expressions for 
this function 

~(E) = ~z -1 Im Sp In[1 - Go(E - i0)V] 

~(E) = z:-1 arctan ~zC(E) dim V = 1 
1 + f (C(E' )  aE')/(E' -- E ) '  

and demonstrated its important role in the calculation of physical quantities 
of a locally perturbed system. A relationship was established between the 
spectral shift function and the phase of the wave scattered from a local 
perturbation [IV.2, II.1 ].3 For the first time, I. M. Lifshitz derived the trace 
formula 

sp{r  - r = f r r d E  + - r176 
g 

Being an important tool for constructing the concentration expansion (the 
construction was completed some time later), the formulas presented above 
and the corresponding mathematical apparatus became the origin of a new 
direction in mathematical and mathematical-physical investigations (M. G. 
Krein, L. D. Faddeev, V. S. Buslaev, and M. S. Birrnan), and have now been 
widely used in the theory of completely integrable nonlinear evolution 
equations. 

The methods of local perturbation theory were used in [III.15 ] to study 
wave scattering from a small inhomogeneity in a crystal lattice. The study 
was performed in terms of an arbitrary phonon dispersion law and for an 

See also Uchenye Zapiski of Kharkov State University, 27:105-107 (1948) (in Russian). 
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iso-frequency surface (2)2(k)= E, which shows that even at that time I. M. 
Lifshitz clearly understood an important role of the dispersion law in an 
analysis of dynamic and static properties of quasiparticles. The effectiveness 
of such an approach was fully demonstrated in brilliant Lifshitz's works on 
the electron theory of metals. 

At present, the apparatus of the theory of local modes has become an 
integral part of the solid state theory formalism; many important physical 
effects have been calculated with the aid of this apparatus (in particular, the 
existence of quasilocal modes has been predicted and their role in the 
kinetics of imperfect crystals analyzed). 

3. CONCENTRATION EXPANSION: 1 9 5 5 - 1 9 5 7  

The works of this series were initiated by experiments on solid solutions 
of hydrogen isotopes. The main concepts of the theory of disordered systems, 
such as quenched disorder of an arbitrary statistical nature, the self- 
averagedness of additive quantities of the theory, the possibility of expanding 
the quantities in the powers of concentration, and calculation of the 
expansion coefficients, act in these works as thoroughly elaborated modern 
notions and are effectively used for solving a very interesting problem of that 
time--the structure and properties of solid solutions of solifified gases 
[IV.7]. 

In 1955, in paper [IV.4] I. M. Lifshitz used, for the first time, the term 
a disordered system in the sense we understand it now, and rigorously 
formulated the property of selfaveragedness of the density of states: "For a 
sufficiently large crystal, the true value of the spectral density coincides with 
its mathematical expectation." In the same paper, the concentration 
expansions for the spectral shift function, for the density of states, and for 
the free energy of a solid solution were obtained in a general form using the 
trace formula and methods of local perturbation theory: 

F -- F o = N J  dE q~'(E){Cr + V' W,[r _ 2G(E)I + " "  } 2 #  

where IV, is the pair correlation function of impurities. It was shown that the 
concentration expansion is of more general form than the perturbation 
expansion, and the boundary shift of the initial spectrum was determined for 
the first time: 

822/38/1 2 3 
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This formula was derived by calculating explicit first-order corrections in the 
concentration and writing the final result with an overestimated accuracy. 
Later, in the sixties, this formula was obtained in a more consistent fashion 
by many authors, including I. M. Lifshitz, with the aid of the self-consistent 
Hartree-Fock-type methods, summation of ladder diagrams, etc. An analysis 
of paper [IV.4] shows that I. M. Lifshitz completely understood the 
qualitative picture of a complicated structure of the discrete spectrum in the 
impurity band for low-impurity concentrations: "As it follows from Eq. (23), 
as well as from the physical meaning of the quantities, the point E ~j) [a 
one-center local level] is a limit point for the sequence of points E (2) 
appearing in the terms ~c2;  similarly, each point of the sequence E (2) is a 
limit point for the sequence E ~3) of the spectrum points that are obtained via 
the substitution of three atoms and appear in the terms ~c3; etc." Later, this 
fine structure was obtained both in a theoretical analysis of the one- 
dimensional models and in numerical calculation of the density of states. 

The investigations performed till 1956 were summed up in the review 
[II.3 ]. It was pointed out that an analysis of a disordered system that lacks 
translational invariance requires a nonconventional mathematical apparatus: 
"... It is known that the existence of translational symmetry greatly simplifies 
the mathematical aspect of the problem... Other results, at least qualitative, 
are not related to this fact, but they cannot be proved within the framework 
of the present theory whose methods are entirely based on the existence of a 
periodic crystal structure." 

In the sixties, the concentration expansion method became a basis for 
various self-consistent methods, both "one-particle," i.e., based on a first- 
order approximation in the concentration, and "many-particle." At present, 
the concentration expansion method, as well  as its modified a n d  self- 
consistent versions, have been developed further and are now being used as 
an efficient instrument for studying a wide range of phenomena and 
properties in different disordered systems (electronic, vibrational, and 
magnetic). 

4. THE IMPURITY BAND: 1963 

From 1957 to 1963, no Lifshitz works on the theory of disordered 
systems were published. In all probability, this was mainly due to his 
intensive work at that time on the electron theory of metals, which 
culminated in the creation of a well-known "fermiology." Nevertheless, I. M. 
Lifshitz did not cease mediating on some problems in the theory of disor- 
dered systems, and a number of fundamental works were written in the 
sixties, which played an extremely important role in the development of the 
theory. 
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Apparently, the original Lifshitz idea was "to extend the results 
obtained for phonons and the corresponding methods to electrons in a 
crystal" [II.3]. However, while working at paper [IV.8], he proceeded much 
further. As a result, a new "basis" model appeared in the theory, a 
probabilistic approach was used for the first time to interprete the density of 
states, and it was clearly demonstrated that for low-impurity concentrations 
all states in the impurity band are localized. 

Proceeding from the definition of the density of states and from its self- 
averagedness, one may interpret p(E)dE as the probability (generally 
nonnormalized) that an arbitrary level is contained within the interval 
(E,E + dE). Using this consideration, I. M. Lifshitz developed a very 
efficient method of calculating the density of states. He noticed that there 
exist a number of remarkable cases where in the parameter region of interest 
the density of states is formed due to a rather narrow, optimal class of 
realizations. This means that in the basic approximation, in which the 
remaining part of the distribution is neglected, one may concentrate only on 
a few constructively defined representative configurations. An obvious 
advantage of the method is that it predicts the character of an overwhelming 
fraction of the states that form p(E) in a given range of energies and 
parameters. The effectiveness of this general conception was demonstrated in 
the study of the impurity band spectrum in a certain spectral disorder model, 
which is now called Lifshitz's model. 

Point scatterers (of 0-function type in the one-dimensional case) are the 
simplest realization of local perturbations in the electron system. By 
arranging these scatterers in space at random, one obtains a very profound 
model of structural disorder, and precisely in terms of this model the 
impurity band of the electron spectrum was studied in paper [IV.8]. An 
allowance for low-impurity concentration lies mainly in changing the energy 
scale. In this approximation, the energy levels and states admit a transparent 
geometric systematics. In the new energy variable, the density of states 
become universal and independent of the concentration. In the far 
neighborhood of a local level, i.e., at the impurity band tails, the density of 
states is formed by pairs of closely spaced impurities, while near a local level 
it is formed by individual impurities which are rarefaction centers of a 
growing volume, so that the density of states has a gap at the center of band. 
Although in the basic approximation the energy levels may depend on the 
positions of a large number of centers, the wave functions are always 
localized at one or two centers: "As can be seen from the analysis just 
performed, the states that are collective for all impurity centers, i.e. those 
that are 'spread' over the entire crystal volume, as is the case with a periodic 
structure, have zero probability)' 

Lifshitz's model of structural disorder is extremely profound and 
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realistic. At the same time, it is rather complicated, and this is, probably, the 
reason why until recently this model was studied in a rather small number of 
papers as compared with those dealing with another, popular one-body 
"basic" model--Anderson's model--which is based on substitutional 
disorder. It is believed, however, that as the theory of disordered systems is 
developed further, Lifshitz's model will play an ever-increasing role. 

Apparently, I. M. Lifshitz was fully conscious of that. Permanently and 
with unremitting interest did he return to the model. The last Lifshitz paper 4 
published in this issue also deals with the structural disorder model. In this 
work it is shown, in particular, that just near a local level one has to take 
into account corrections to the basic approximations due to a new class of 
optimal configurations, so that the gap in the density of states becomes less 
pronounced. 

5. REVIEW: 1964 

The next fundamental work of that period was the well-known review 
[II.8] in which I. M. Lifshitz formulated a program for analyzing the 
spectrum of elementary excitations in disordered systems. The main attention 
was paid to studying the spectrum in the vicinity of singular points, since 
"precisely in this region the quantum states and their systematics are 
completely rearranged. Near these points, the perturbation is no longer small 
in the sense of small effect on the states or on the spectrum." As the singular 
points (possibly, in the asymptotic sense), we may note, above all, spectral 
boundaries, one-center local levels, boundaries of the initial spectrum, etc. 

As a realization of the program, the review presents many new results, 
so that we call it a review only conditionally. Among these results, one 
should note, first of all, the concept of genuine spectral boundaries and the 
construction of a physically clear and profound spectral pattern near the 
boundaries Eg, which were called later fluctuation boundaries [I.3]. The 
neighborhood of a fluctuation boundary is apparently a much more 
fundamental example (as compared to the impurity band) of the spectral 
region where the approach based on optimal configurations is extremely 
effective. I. M. Lifshitz showed that, to within the logarithmic accuracy, the 
density of states in this region is of the form 

E - -  Eg -d /2  
- p ( E )  ~ E~ , E ~ Eg (2) 

(Lifshitz's singularity) and is determined by fluctuations with a maximal 
concentration of impurities at which the corresponding quantum states are 

4 Journal o f  Statistical Physics, this issue, p. 37. 
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localized. The review contains, in fact, the fundamental ideas of the method 
which, at the end of the sixties, became known as the optimal fluctuation 
method. While advancing this "optimal" ideology, I. M. Lifshitz obtained, 
for the first time, the asymptotic behavior of the density of states on the left 
of the potential mean value 0 in the three-dimensional model of weak point 
scatterers of high concentration 

--In p ( E )  U - -  E 1/2 
~ l _ i f _  , 8-E 8 

A simple analysis of the arguments presented in the review shows that in the 
d-dimensional case this formula turns into 

- E 2-d/2 
- l n  p(E) ~ ~ (3) 

In 1966, it was rederived by B. Halperin and M. Lax, and by J. Zittarz and 
J. Langer, and became rather popular. 

The review also presents many other important results. In particular, the 
study of the conditions for the occurrence of a local level generated by one 
or several impurities, calculation of the shift of the initial part of the 
spectrum by summing an infinite series of most singular terms in the concen- 
tration expansion of the density of states, etc. I. M. Lifshitz pointed out in 
the review a specific role of the lower boundary of the phonon spectrum 
acoustic branch: this boundary is not shifted by any disorder, and state 
systematics in the nearest neighborhood of the boundary does not change 
(later, such boundaries were called stable [I.3]. 

We may say in conclusion that this review, together with the familiar 
review by N. Mott and U. Twose, marked the beginning of a modern stage in 
the development of the theory of disordered systems, which led to a great 
surge of interest in the field and to a large number of papers which undoub- 
tedly carried the imprint of Lifshitz's ideas and methods. 

6. F L U C T U A T I O N  LEVELS: 1 9 6 7 - 1 9 7 6  

Advancing the concept of fluctuation levels, I. M. Lifshitz constructed 
in 1967 a consistent quantitative theory of these levels [IV.9], which 
completely rested upon the "optimal" ideology. Interestingly, Lifshitz's 
theory according to both its spirit (the existence of a unique, to within a 
shift, optimal fluctuation) and the mathematical apparatus used (the steepest 
descent method), resembles Landau's theory of second-order phase tran- 
sitions. An essentially new point, completing the "optimal" ideology, was the 
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macroscopic description of an optimal fluctuation in terms of the coordinate- 
dependent impurity concentration e(r), which became possible in the limiting 
case of the so-called low-intensity impurities. All this led to the self- 
consistent equations 

o'(c) -- a'(Co) = / / f  u(r - r ' )  ~,2(r') dr' 

-- Aqso(r ) + ~,o(r) f u(r - r ')  ~o2(r ') dr' = E~uo(r ) 

[where o(c) is the entropy of the impurity "gas"] from which the form of the 
optimal fluctuation of e(r), the wave function g0(r), and the density of states 
at different energies could be found. In the vicinity of the mean potential 
value, long-wavelength Gaussian fluctuations of the concentration are 
optimal and lead to the "white-noise" asymptotic behavior (3). Near the 
boundary, they turn to local fluctuations of the maximal concentration, and 
the density of states is described by Eq. (2). At a low-impurity concentration, 
the transition from one regime to the other occurs in a very narrow energy 
interval. 

The idea of macroscopization enabled the applicability limits of the 
optimal fluctuation method to be widened considerably and, which is even 
more important, the method to be made more universal as compared with the 
approach developed in 1966 by B. Halperin and M. Lax and by J. Zittarz 
and J. Langer. Precisely this feature of Lifshitz's approached proved to be 
decisive in the extension of the optimal fluctuation method to other classes of 
scatterers (screened Coulombic impurities) and to other classes of objects 
(biopolymers), as well as in its various applications (viz., in the theory of 
heavily doped semiconductors) carried out by B. Shklovsky and A. Efros. 

Later, the "fluctuation ideology" led I. M. Lifshitz to the concept of 
fluctuons--electron states self-localized at such fluctuations--and to the 
development of their thermodynamics [IV.10] (the theory of fluctuons was 
constructed independently, and at the same time, by M. A. Krivoglaz). 

Soon it was understood that the genuine large parameter in the theory 
of fluctuation levels is the excess number of impurities at an optimal fluc- 
tuation. Near the boundary, however, this parameter tends to infinity for any 
impurity concentration, and if the concentration is low the fluctuation region 
broadens and almost reaches the mean potential value. This idea became a 
starting point for the approach ([II.11]; see also [I.3]) to calculating the 
density of states in the fluctuation region based on a special variational prin- 
ciple. The applicability of the principle was no more restricted by the 
condition of macroscopic description, and, therefore, the above approach 
enabled I. M. Lifshitz to obtain not only all previous results due to V. 
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Bonch-Bruevich, B. Halperin and M. Lax, A. Kane, L. Keldysh, B. 
Shklovsky and A. Efros, and J. Zittarz and J. Langer, but also new 
asymptotic behaviors of the density of states in the fluctuation region. 

7. T R A N S M I S S I O N  OF PARTICLES T H R O U G H  A 
R A N D O M - D I S O R D E R E D  M E D I U M :  1 9 7 9 - 1 9 8 2  

In the last years of his life I. M. Lifshitz paid great attention to the 
transmission of particles and waves through a disordered medium--the 
problem which is interesting in many respects. 

The first work of the series [IV.I1] dealt with the tunneling of a 
quantum particle through a macroscopically smooth potential barrier of 
finite thickness in which the particle undergoes elastic subbarrier scattering 
from random scatterers. The problem was to calculate the transparency a L of 
a layer of thickness L. Since the scattering is a subbarrier, even in a three- 
dimensional case the problem is almost one-dimensional. Furthermore, the 
problem is close to one-dimensional in the case where the layer is in the form 
of a bundle of thin filaments, and the observable transparency is given by 

M 

a L = M - 1  ~" T~i) a L  
i - - I  

where M is the number of filaments and T L is the transmission coefficient of 
one filament of length L. As M ~  oo, the observable transparency coincides 
with the mean transparency (aL) the contribution into which is due to 
improbable configurations with relatively high values of the transmission 
coefficient. Two essentially different physical situations are possible: (1)the 
resonance case, where the energy of a tunneling particle lies in the 
neighborhood of the discrete spectrum of disordered impurity centers, and 
(2)the nonresonance case, where the particle energy does not lie in the 
spectrum. In the resonance case, using the fluctuation ideology and the 
geometric description similar to that developed for studying the impurity 
band, I. M. Lifshitz considered the class of optimal configurations for which 
the transmission coefficient is close to unity and calculated the decrement of 
the mean transparency. In the nonresonance region, where the decrement is a 
smooth function of the parameters, the concentration expansion method was 
used. 

The theory was then applied [IV.12] to study the explosion electron 
emission from a metal into a plasma when resonantly tunneling electrons 
contribute mainly to the emission. 

The problems treated in this series are nonconventional mainly because 
of a rather complicated statistical nature of transparency. The transmission 
problem always involves two macroscopic dimensions: longitudinal (layer 
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thickness L)  and transverse (cross-section areaS).  For a fixed layer 
thickness, the transparency is selfaveraged, i.e., becomes nonrandom, if the 
area S tends to infinity. It is shown in paper [IV.13], which considers these 
problems in detail, that for a bundle of filaments satisfying the relation 

M = e qL 

and for large L the decrement of the observable transparence 

Yeff = - L  - 1 In a L 

becomes nonrandom and depends on the parameter q as 

Yeff = ~ + min {q)(~) - ~} 
o(g)<q 

Here ~7 is the self-averaged transmission coefficient of a single filament, and 
the function ~0(~) describes the probability density P (~ )=  A exp[-L~0(~)] of 
fluctuations ~ = • + L -1 In T L of the coefficient. Thus, the paper thoroughly 
considered, for the first time, how finite dimensions of a sample influence the 
statistical properties of its physical characteristics. 

The problems just mentioned are now being extensively developed. A 
number of papers have appeared which deal with various aspects of the 
phenomena occurring on particle transmission through a disordered layer 
(these penomena are of interest for specialists in solid state physics, optics, 
and radio-physics). 

Lifshitz's ideas and works have played an important role in many fields 
of the physics of condensed state and have been generally acknowledged. We 
believe, nevertheless, that he exercised a special influence on the development 
of the theory of disordered systems. I. M. Lifshitz was, undoubtedly, one of 
the founders of the modern theory of disordered systems, and enormous 
progress in the theory is, for the substantial part, caused by his ideas and 
enthusiasm. He pioneered research in several directions of the theory, which 
are now being extensively developed. This is mainly due to a remarkable 
feature of his scientific activities: not only did his papers contain interesting 
ideas and results, not only did they present new effective methods, but they 
also formulated programs for studying various interrelated problems and 
outlined the ways to realize these programs. 

At present, the physics of disordered systems possesses profound 
general theoretical concepts and a well-elaborated set of methods (see, e.g., 
the monograph by Lifshitz e t  a l .  [I.3 ]) a large number of different, sometimes 
unexpected, experimental results, and a rapidly growing field of applications. 
Although the theory of disordered systems, in its present form, is the fruit of 
international cooperation of scholars, Ilya Mikhailovich Lifshitz was, 
undoubtedly, one of the most eminent scientists who turned the theory into a 
vast and important branch of modern theoretical physics. 


